首页> 外文OA文献 >A High-Fidelity Haze Removal Method Based on HOT for Visible Remote Sensing Images
【2h】

A High-Fidelity Haze Removal Method Based on HOT for Visible Remote Sensing Images

机译:a High-Fidelity Haze Removal method Based on HOT for Visible Remote sensing Images

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Spatially varying haze is a common feature of most satellite images currently used for land cover classification and mapping and can significantly affect image quality. In this paper, we present a high-fidelity haze removal method based on Haze Optimized Transformation (HOT), comprising of three steps: semi-automatic HOT transform, HOT perfection and percentile based dark object subtraction (DOS). Since digital numbers (DNs) of band red and blue are highly correlated in clear sky, the R-squared criterion is utilized to search the relative clearest regions of the whole scene automatically. After HOT transform, spurious HOT responses are first masked out and filled by means of four-direction scan and dynamic interpolation, and then homomorphic filter is performed to compensate for loss of HOT of masked-out regions with large areas. To avoid patches and halo artifacts, a procedure called percentile DOS is implemented to eliminate the influence of haze. Scenes including various land cover types are selected to validate the proposed method, and a comparison analysis with HOT and Background Suppressed Haze Thickness Index (BSHTI) is performed. Three quality assessment indicators are selected to evaluate the haze removed effect on image quality from different perspective and band profiles are utilized to analyze the spectral consistency. Experiment results verify the effectiveness of the proposed method for haze removal and the superiority of it in preserving the natural color of object itself, enhancing local contrast, and maintaining structural information of original image.
机译:空间变化的雾度是当前用于土地覆盖分类和制图的大多数卫星图像的共同特征,并且会显着影响图像质量。在本文中,我们提出了一种基于雾度优化变换(HOT)的高保真雾度消除方法,该方法包括三个步骤:半自动HOT变换,HOT完善和基于百分位的暗物减法(DOS)。由于红色和蓝色波段的数字(DN)在晴朗的天空中高度相关,因此使用R平方标准自动搜索整个场景的相对最清晰区域。 HOT变换后,首先通过四方向扫描和动态插值掩盖并填充伪造的HOT响应,然后执行同态滤波以补偿大面积被掩盖区域的HOT损失。为了避免斑点和光晕伪像,实施了称为百分位数DOS的过程以消除雾霾的影响。选择包括各种土地覆盖类型的场景以验证所提出的方法,并与HOT和背景抑制的雾度厚度指数(BSHTI)进行比较分析。选择了三个质量评估指标,以从不同角度评估雾霾去除对图像质量的影响,并利用谱带图谱分析光谱一致性。实验结果证明了该方法的有效性和在保留物体本身的自然色,增强局部对比度以及保持原始图像结构信息方面的优越性。

著录项

  • 作者

    Jiang H.; Lu, N.; Yao, L.;

  • 作者单位
  • 年度 2016
  • 总页数
  • 原文格式 PDF
  • 正文语种 英语
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号